Proteomic Analysis of Cellular Response Induced by Multi-Walled Carbon Nanotubes Exposure in A549 Cells

نویسندگان

  • Li Ju
  • Guanglin Zhang
  • Xing Zhang
  • Zhenyu Jia
  • Xiangjing Gao
  • Ying Jiang
  • Chunlan Yan
  • Penelope J. Duerksen-Hughes
  • Fanqing Frank Chen
  • Hongjuan Li
  • Xinqiang Zhu
  • Jun Yang
چکیده

The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعیین شاخص‌های سم شناسی کربن نانوتیوب و کریزوتایل بر اساس سمیت سلولی در سلول‌های اپیتلیال ریه انسان به صورت اینویترو

Background and aim: In this study the cytotoxicity to human epithelial lung cells of single-walled carbon nanotubes, multi-walled carbon nanotubes and chrysotile was compared based on the following cytotoxicity indices: no observable adverse effect concentration (NOAEC), inhibitory concentration 50 (IC50), and Total Lethal Concentration (TLC). Materials and Methods: Human epithelial lung cells...

متن کامل

Electrochemical Sensing of H2S Gas in Air by Carboxylated Multi-walled Carbon Nanotubes

The electrochemical sensor for detecting hydrogen sulfide was fabricated. H2S gas molecules pass through polytetrafluoroethylene membrane with 0.22 mm pore size. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to fabricate working and counter electrodes. It can be seen from Field Emission Scanning Electron Microscopy (FESEM) images of the working electrode that...

متن کامل

Citrullination as early-stage indicator of cell response to Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes (SWCNTs) have been widely explored as potential technologies for information systems and medical applications. The impact of SWCNTs on human health is of prime concern, if SWCNTs have a future in the manufacturing industry. This study proposes a novel, inflammation-independent paradigm of toxicity for SWCNTs, identifying the protein citrullination process as early...

متن کامل

Evaluation of Cardiopulmonary Toxicity Following Oral Administration of Multi-walled Carbon Nanotubes in Wistar Rats

Objective(s): Carbon nanotubes have unique mechanical, electrical, and thermal properties, with potential different applications in nanomedicine, electronics, and other industries. These new applications of carbon nanotubes in different industries lead to the increased exposure risk of nanomaterials to human. Up to now, all aspects of carbon nanotubes toxicity are not com...

متن کامل

Electrochemical Analysis of Tryptophan using a Nanostructuring Electrode with Multi-walled Carbon Nanotubes and Cetyltrimethylammonium bromide Nanocomposite

Multi-walled carbon nanotubes (MWCNTs) were immobilized on the surface of a glassy carbon electrode (GCE) in the presence of cetyltrimethylammonium bromide (CTAB) to form a MWCNTs-CTAB nanocomposite-modified electrode. The electrocatalytic response of the modified electrode towards tryptophan (Trp) was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014